

Wie sicher sind Lithium Batterien - im Haus und Auto?

Solarfreunde Moosburg

Dr. Katja Brade, Prof. Dr. Hans-Georg Schweiger 05.10.2017

■ Hohe Energiedichte → 500 km Reichweite möglich √

Hohe Leistungsdichte -> Fahrdynamik und Schnellladung

■ Hohe Lebensdauer → 15 Jahre möglich

Optimale Batterie für Elektrofahrzeuge

Aber hohes Gefährdungspotential 🗶

Wie die Fahrzeugsicherheit gewährleisten

Gefahren durch Lithium-Ionen-Zellen

Übertemperatur

- Zelle öffnet und bläst ab
- Freisetzung von Zellmaterial
- Brand durch Elektrolyt

- Zelle öffnet und bläst ab
- Freisetzung von Zellmaterial
- Brand durch Elektrolyt

Überladung

- Zelle öffnet und bläst ab
- Freisetzung von Zellmaterial
- Brand durch Elektrolyt oder Elektrode

Tiefentladung

- Zelle beschädigt
- Ggf. interner Kurzschluss nach wiederladen

Mechanische Beschädigung

- Zelle öffnet und bläst ab
- Freisetzung von Zellmaterial
- Brand durch Elektrolyt

Missbrauchstests

CARISSMA 💽

FreedomCar test manual

Übertemperatur **Tests**

- Thermische Stabilität
- Simulierter Kraftstoffbrand
- Hochtemperaturlagerung
- Schnelles Laden/Entladen
- Thermischer Schock

Tests

- Kurzschluss
- Teilweiser Kurzschluss

Test

Überladung/Überspannung

Tiefentladung

Test

Tiefentladung/Umpolung

Tests

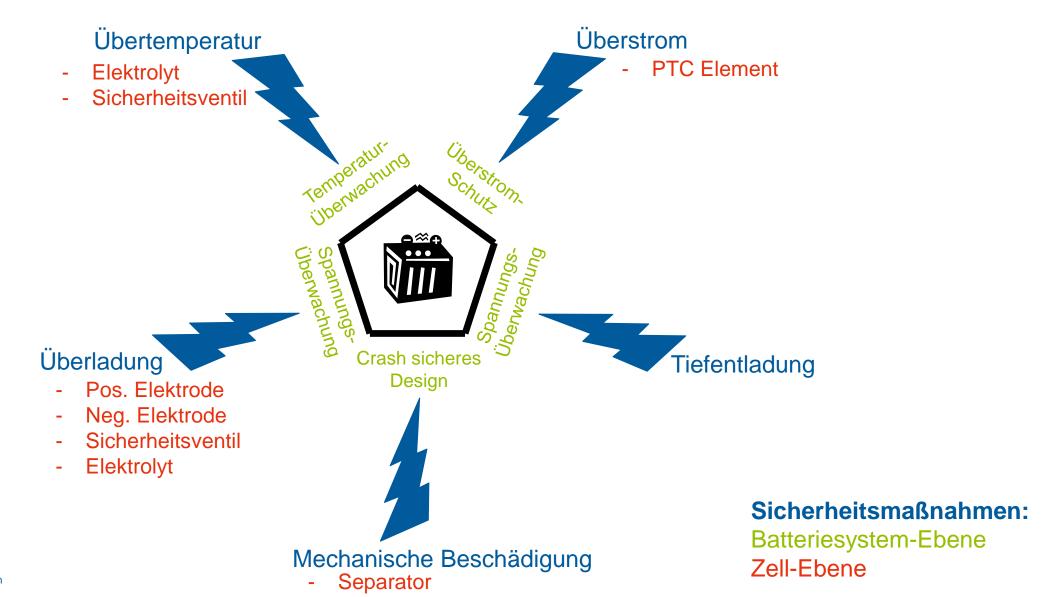
- Crush-Test
- Penetration
- **Falltests**
- Eintauchen
- Überschlags Simulation
- Mechanischer Schock

Hazard level Klassifikation

CARISSMA 💽

EUCAR hazard level [1]

Hazard Level	Beschreibung	Classification Criteria & Effect
0	Kein Effekt	Kein Effekt. Kein Verlust der Funktionalität
1	Passiver Schutz Aktiviert	Kein Defekt; keine Leckage; Kein Abblasen, Feuer, oder Flamme; kein Platzen; keine Explosion; keine exothermische Reaktion oder Thermal Runaway. Reversibler Schaden. Reparatur der Schutzeinrichtung nötig
2	Defekt/ Beschädigung	Keine Leckage; kein Abblasen, Feuer, oder Flamme; kein Platzen; keine Explosion; keine exothermische Reaktion oder Thermal Runaway. Zelle irrevesible beschädigt, Reparatur nötig
3	Leckage ∆mass < 50%	Kein Abblasen, Feuer, oder Flamme; kein Platzen; keine Explosion. Masseverlust Elektrolyt <50% (Elektrolyt = Lösungsmittel + Salz).
4	Leckage Δmass ≥ 50%	Kein Feuer oder Flamme*; kein Platzen; keine Explosion. Masseverlust Elektrolyt ≥ 50% (Elektrolyt = Lösungsmittel + Salz).
5	Feuer oder Flame	Kein Platzen; keine Explosion(z.B. keine fliegenden Teile).
6	Platzen	Keine Explosion, aber keine fliegenden Teile der Aktivmasse.
7	Explosion	Explosion (i.e. Zelle zerlegt sich).

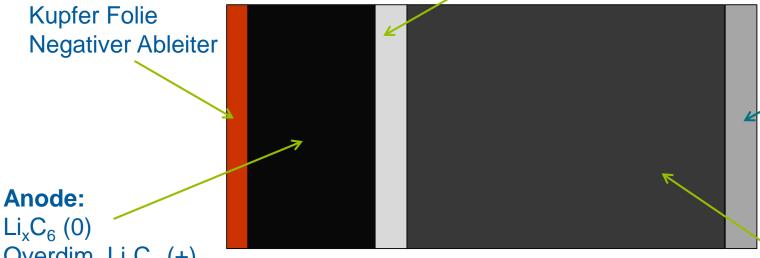

Harzard level: Maßstab für Batteriegefahren

Hohe Gefahr für Fahrzeuginsassen

Wie Fahrzeuginsassen vor Gefahren von Batterien schützen?

Sicherheitsmaßnahmen auf Zell- und Batteriesystemebene

Sicherheitsmaßnahmen auf Zellebene


CARISSMA 💽

Wahl der Materialen beeinflusst die Sicherheit

Separator:

Shutdown Separator (+)

Keramischer Separator (++)

Positiver Ableiter

Aluminium Folie

 $\text{Overdim. Li}_{x}\text{C}_{6}$ (0) $\text{Overdim. Li}_{x}\text{C}_{6}$ (+) $\text{Li}_{4}\text{Ti}_{5}\text{O}_{12}$ (+++)

Elektrolyt:

Organische Carbonate (+)

Fluorierte Carbonate (++)

(Brandschutz-Additive) (++)

(Überlade-Additive) (++)

Kathode:

LiFePO₄ (+++) Li(Ni_xCo_yMn_z)O₂ (++) LiMn₂O₄ (++) LiCoO₂ (---)

Zusätzliche Maßnahmen

- Sicherheitsventile
- · (PTC Elemente)

Zellmaterialien und Zelldesign haben großen Einfluss auf die Sicherheit der Zellen

Crush Test Setup

CARISSMA C

Simuliert einen Fahrzeugcrash im schlimmsten Fall (FreedomCar modifiziert)

Vorbereitung

- Simuliert den schlimmsten Fall
- Zelle auf maximale Spannung geladen
- Zelle auf maximale Temperatur erwärmt

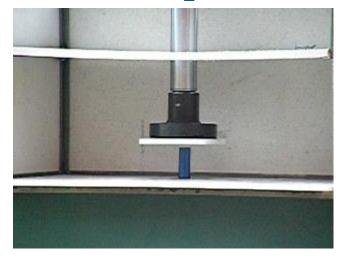
- Zelle mit bis zu 40 t zusammenpressen
- Funkengenerator läuft
- Aufzeichnen von Video und Thermographie
- Messung der Zellspannung und -Temperatur

Analyse

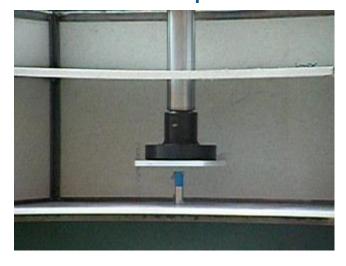
- Analyse der Videos
- Einstufung der Ergebnisse nach EUCAR
- Zellspannungs- und Temperaturprofile

Entsorgung

- Brand Löschen
- Zellen in CaCl₂-Lösung deaktivieren



LiCoO₂ Zelle



- Feuer beobachtet
- Zelle brennt
- Fliegende Teile der Aktivmasse
- → Hazard level 5-6

Großer Einfluss der positiven Elektrode

LiFePO₄ Zelle

- Kein Feuer
- Wenig Rauch beobachtet
- Keine fliegende Teile der Aktivmasse
- → Hazard level 3

Gutes Sicherheitsniveau

Sicherheitsmaßnahmen auf Systemebene

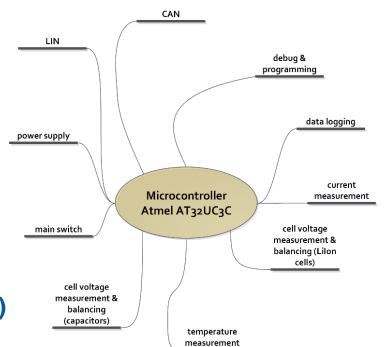
Wie schützt man vor elektrischen Fehlern?

BMS = Battery Management System Schützt die Batterie vor:

- Überspannung
- Unterspannung
- Übertemperatur

Bestimmung der Batterieparameter

- SOC, SOH
- Leistungs- und Reichweitenvorhersage


Datenerfassung:

- Zellspannung
- Systemspannung
- Systemstrom

BMS steuert Abschaltung (Schütze, Pyrofuse)

Pyrofuse

BMS schaltet den **Speicher im Fehlerfall ab**

Überladeversuche: Aufbau

CARISSMA 💽

Simuliert den Ausfall des BMS bei einem Fehler im Fahrzeug

Vorbereitung

- Simuliert den schlimmsten Fall
- Laden der Zellspannung auf max. Spannung
- Zelle auf maximale Temperatur erwärmt

- Laden der Zelle auf 2* U_{max}
- Laden mit dem Strom den die Zelle aufnimmt

Analyse

- Analyse der Videos
- Einstufung der Ergebnisse nach EUCAR
- Zellspannungs- und Temperaturprofile

Entsorgung

- Brand Löschen
- Zellen in CaCl₂-Lösung deaktivieren

Quelle: Reichelt

 $U_{\text{max}}=16 \text{ V}$ I_{max} =40 A

Lithiumionenzelle Zellspannung Zellstrom

LiCoO₂ Zelle

- Feuer beobachtet
- Zelle brennt
- Fliegende Teile der Aktivmasse
- → Hazard level 5-6

Großer Einfluss der positiven Elektrode

LiFePO₄ Zelle

- Kein Feuer beobachtet
- Nur Rauch
- Keine Fliegende Teile der Aktivmasse
- → Hazard level 3-4

Gutes Sicherheitsniveau

- Sicherheitsmaßnahmen auf Zell- und Systemeben sorgen für Sicherheit im Fahrzeug
- Großer Einfluss der Zellchemie (Kathode) auf die Sicherheit der Zellen
- Überladen zerlegt die Zelle → Überladeschutz auf Systemebene
- Hohe Sicherheitsniveau kann auch unter extremen Bedingungen erreicht werden

Sichere Elektromobilität ist möglich!

Vielen Dank für die Aufmerksamkeit

Haben Sie Fragen?

[1] Daniel H. Doughty and Chris C. Crafts, SANDIA REPORT SAND2005-3123, FreedomCAR Electrical Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications, 2006