

Stromspeicherlösungen für Hausbesitzer, Landwirte und Gewerbetreibende

Solarfreunde Moosburg 05.03.2015

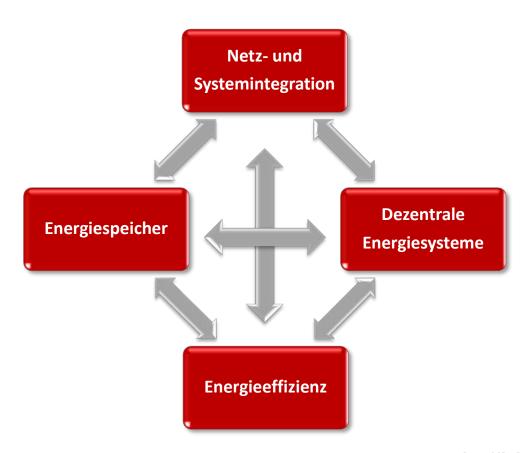
Gliederung allgemein

Vorstellung TZE

Warum Speicher? (Studien zu 100% EE)

Unterschiedliche Speichersysteme

Batteriespeicher für Heimanwendungen


Facts

- Gegründet im Oktober 2011 als Außenstelle der Hochschule Landshut
- Gefördert mit Mitteln aus "Aufbruch Bayern" bis September 2016
- Unterstützt mit Mitteln der Marktgemeinde Ruhstorf an der Rott und des Landkreises Passau

Forschungsschwerpunkte

Alle Forschungspunkte bündeln ihre Kompetenz in der **Energieeffizienz**.

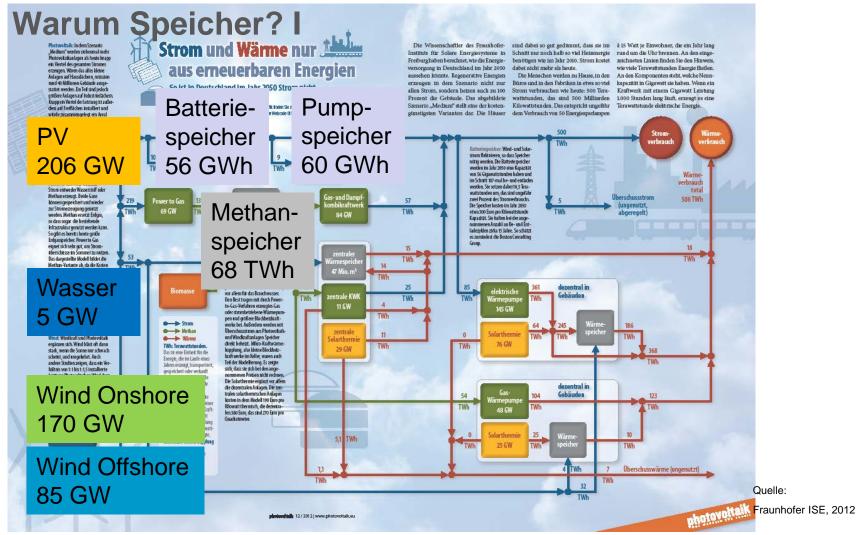
Kernkompetenzen: Was können wir am TZE zur Energiewende beitragen?

Forschungsgebiete und Professuren

Energiespeicher chemisch und elektrisch

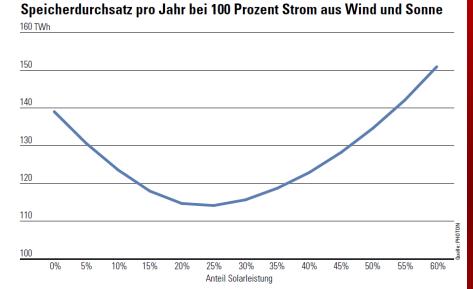
Dezentrale Energiesysteme

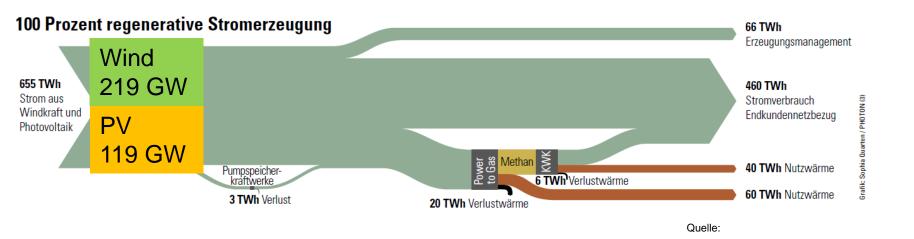
Netzintegration



Energieeffizienz / Energiemanagement

Professur in Vorbereitung





Warum Speicher? II

- Verhältnis von 1/3 PV zu 2/3 Drittel
 Wind wäre für den
 Speicherdurchsatz optimal
- Aber: Abweichungen sind möglich

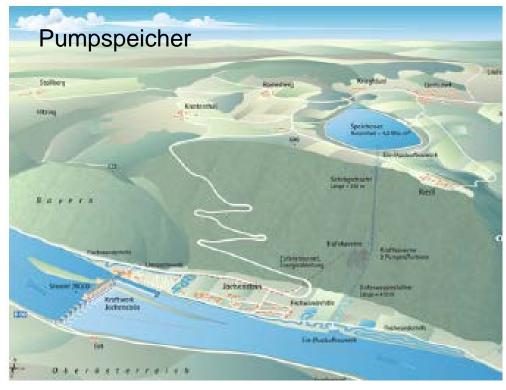
Warum Speicher? III

- Unterschiedliche Studien haben die Möglichkeit der Vollversorgung aus 100 % Erneuerbaren Energien nachgewiesen.
 - Wesentlich sind dabei 4 Dinge
 - 1. Erzeugungsleistung massiv ausbauen
 - 2. Ausgleich von Erzeugung und Verbrauch
 - 3, Zunehmend gekoppelte Betrachtung von Strom-, Wärme und Gasversorgung
 - 4, Es wird nicht die "eine" Lösung geben, sondern ein Zusammenwirken von vielen Maßnahmen

Unterscheidungen an Speichersystemen

- Art der Umwandlung
- Art Speicherung
 - Mechanische Speicherung
 - Chemische Speicherung
 - Elektrische Speicherung
- Speicherdauer

Unterschiede Speichersysteme - Umwandlung


- "Strom zu Strom" positive und negative Regelenergie
 Speicher nimmt Strom aus dem Netz auf und gibt Strom in das Netz ab
- "Irgendwas zu Strom" positive Regelenergie
 System generiert Strom aus einem speicherbaren Energieträger oder stellt dem Netz Strom durch Verzicht zur Verfügung
- Strom zu Irgendwas" negative Regelenergie

 Strom zu ird vorwendet und in einen anderen niederware

Strom wird verwendet und in einen anderen niederwertigeren Energieträger umgewandelt oder vernichtet

Mechanische Speicherung - Lageenergie

Quelle:

Wasserwirtschaft, 5/2012

- Leistung geplant 300 MW
- Energiemenge geplant3300 MWh
- Die Menge des Wasser und die Fallhöhe beeinflussen die Speichermenge.
- Etablierte Technologie (+)
- Ausbaupotential begrenzt (-)
- Akzeptanz (-)

Mechanische Speicherung - Bewegungsenergie

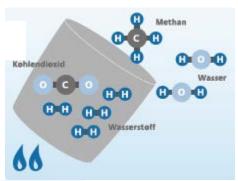
- Leistung 500 kW
- Energiemenge 6 kWh
- Die Drehgeschwindigkeit und die Masse des Schwungrads beeinflussen die Speichermenge.
- Schnelle Reaktionszeit (+)
- Hohe Zyklenlebensdauer (+)
- Hohe Selbstentladung (-)

Quelle:

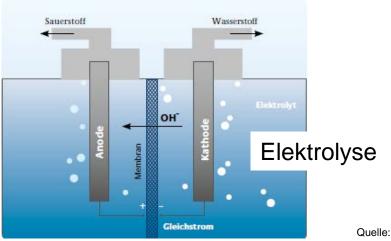
Rosseta GmbH

Mechanische Speicherung - Druck

- Leistung geplant 5 kW
- Energiemenge geplant ca. 90 kWh


- Das Volumen und die Höhe der Verdichtung beeinflussen die Speichermenge.
- Hohe Zyklenlebensdauer (+)
- Effizienz (?)

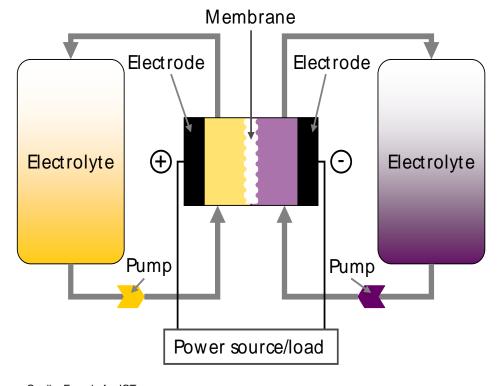
Quelle: CAEStorage GmbH



Chemische Speicherung – Elektrolyse / Methanisierung

Methanisierung

- Bereitstellung eines Langzeitspeichers (+)
- Kosten (?)
- Wirkungsgrad (?)



 Das TZE arbeitet an Verfahren zur CO₂-Abscheidung aus Biogas und der Verflüssigung von Methan

DENA, Broschüre Power to Gas. 12/2013

Chemische Speicherung – Redox-Flow


Quelle: Fraunhofer ICT

- Leistung ab ca. 1 kW
- Energieinhalt ab ca. 4 kWh

- Getrennte Dimensionierung von Leistung und Speicherinhalt(+)
- Kosten (?)
- Wirkungsgrad (?)
- Lebensdauer (?)

Elektrische Speicherung – Natrium / Schwefel

- Quelle:
- Younicos AG

- Leistung 1 MW
- Energieinhalt 6 MWh

- Einsatz für Netzdienstleistungen (+)
- Kosten (?)
- Wirkungsgrad (?)
- Betriebstemperatur 300°C

Elektrische Speicherung – Große Lithiumanlagen I

Quelle: Younicos AG
Batteriespeicher in Schwerin, Betreiber WEMAG,

- Leistung 5 MW
- Energieinhalt 5 MWh
- Einsatz zur Stabilisierung der Netzfrequenz (+)
- Primärregelleistung (+)
- Kosten (?)
- Wirkungsgrad (?)

Elektrische Speicherung – Große Lithiumanlagen II

Quelle: BYD / Fenecon

Batteriespeicher in Senzhen, China,

Leistung 20 MW

- Peak Shaving (+)
- Energieinhalt 40 MWh
 Einsatz zur Stabilisierung der Netzfrequenz (+)
 - Kosten (?)
 - Wirkungsgrad (?)

09.03.2015

TECHNOLOGIEZENTRUM ENERGIE

Unterschiede Speichersysteme - Zeit

- "Sekunden bis Minuten" Kurzzeitspeicher
 - Hohes Leistung zu Energieverhältnis
 - Energiebereitstellung bei Volllast für weniger als 15 min
 - Hohe Zyklenzahlen
- "Tagesspeicher" mittelfristige Energiespeicher
 - Energiebereitstellung im Bereich von einer bis zehn Stunden
 - Typischerweise geeignet nur für den Ausgleich innerhalb eines Tages
 - Ein bis zwei Zyklen pro Tag
- "Wochen bis Monate" Langzeitspeicher
 - Energiebereitstellung über viele Tage bis zu einem Monat
 - Ausgleich z.B. für lang anhaltende Flautenphasen oder saisonale Schwankungen
 - Wenige Zyklen pro Jahr

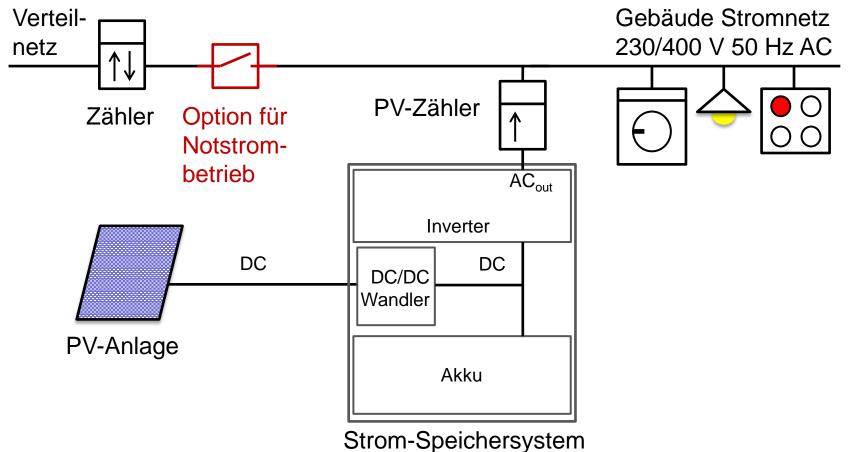
Elektrische Speicherung – Weitere Technologien

- Blei, BleiGel, etc., NiFe, NiCd, NiMH,
 (Doppelschicht)kondensatoren, Supraleitende magnetische Energiespeicher
- Kosten (?)
- Wirkungsgrad (?)
- Zyklenlebensdauer (?)
- → Die Anforderungen bestimmen die Systemauswahl.

Gliederung Batteriespeicher für Heimanwendungen

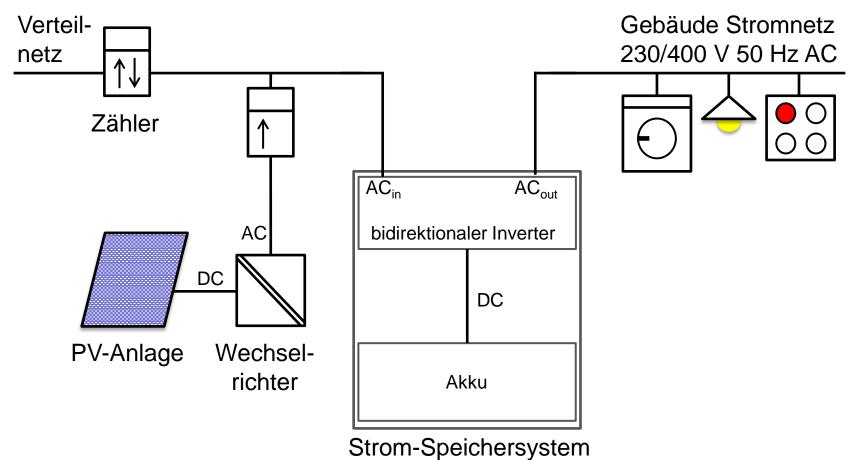
Batteriespeicher für Heimanwendungen

- Systemunterschiede Gebäudeeinbindung
- Systemauswahl
- Systemunterschiede Batterietechnik (Blei, Lithium mit Teilsystemen)
- Fragestellungen zur Systemoptimierung

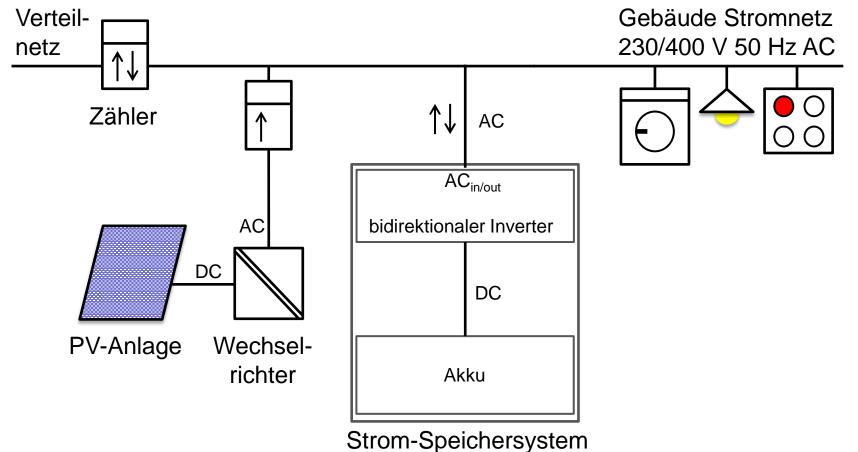

Systemunterschiede in der Gebäudeeinbindung

Elektrische Speicher lassen sich auf unterschiedliche Weise in Gebäudestromnetze integrieren:

- Einflussfaktor: "Einbau-Historie" der technischen Einrichtungen
 - Vorhandene Komponenten weiterverwenden
 - Gesetzliche Rahmenbedingungen geschickt nutzen
- Einflussfaktor: Zielsetzungen an das System
 - Notstromfähigkeit
 - Erweiterbarkeit (z.B. um weitere Erzeugungsanlagen wie BHKW)
 - Nutzung von Mehrwerten (z.B. Blindstromkompensation)

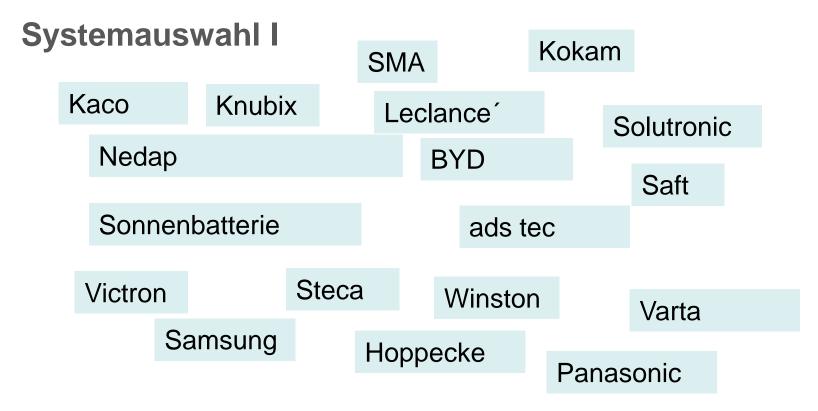


DC-gekoppelte PV/Strom-Speichersysteme



AC-gekoppelte Strom-Speichersysteme: Variante I

AC-gekoppelte Strom-Speichersysteme: Variante II

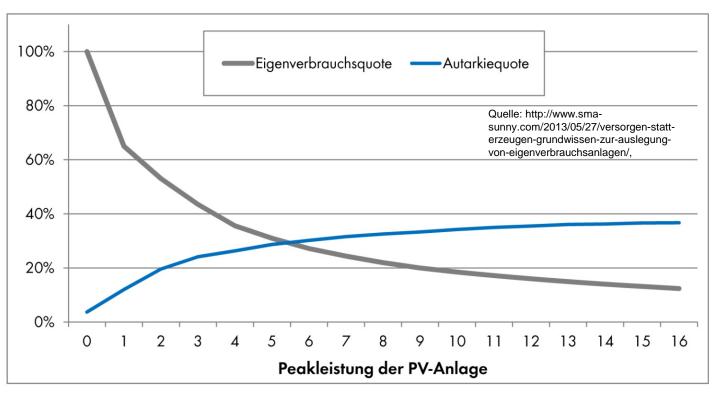


Systemunterschiede Gebäudeeinbindung

- DC-gekoppelt
 - PV-Anlage über DC/DC Wandler mit Akku gekoppelt, nur ein Inverter dadurch niedrigere Anlagenkosten und evtl. höherer Wirkungsgrad
 - Erweiterbarkeit um zusätzliche Erzeugungsanlagen ggf. eingeschränkt
- AC-gekoppelt
 - Nachrüstung von Bestandsanlagen
 - Erweiterbarkeit (z.B. um weitere Erzeugungsanlagen wie BHKW)

Viele Hersteller von Systemen und Teilsystemen

Systemauswahl II


- Zieldefinition der grundsätzlichen Anforderungen an das System
 - Maximierung des Eigenverbrauchs
 - Maximierung der Autarkie

oder

- Maximierung der Wirtschaftlichkeit
- Berücksichtigen von zusätzlichen weiteren Faktoren
 - Teilnahme am Regelleistungsmarkt (Deutsche Energieversorgung, Fenecon, Lichtblick)
 - Einbinden von zukünftigen weiteren Komponenten (BHKW, E-Auto, etc.)
 - Nutzung von Mehrwerten (z.B. Blindstromkompensation, Ausfallsicherheit, Peak-Shaving)

Systemauswahl III

Typischer Verlauf: Während die Eigenverbrauchsquote mit zunehmender PV-Leistung gegen Null strebt, geht die Autarkiequote bei einfachen PV-Anlagen nicht über 30 bis 40 Prozent hinaus (Haushaltslastprofil, Jahresverbrauch 5.000 kWh, Südausrichtung)

Systemauswahl IV

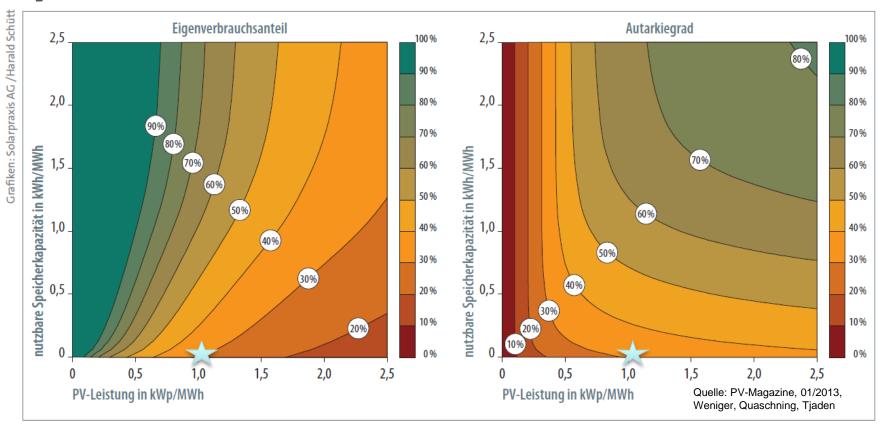
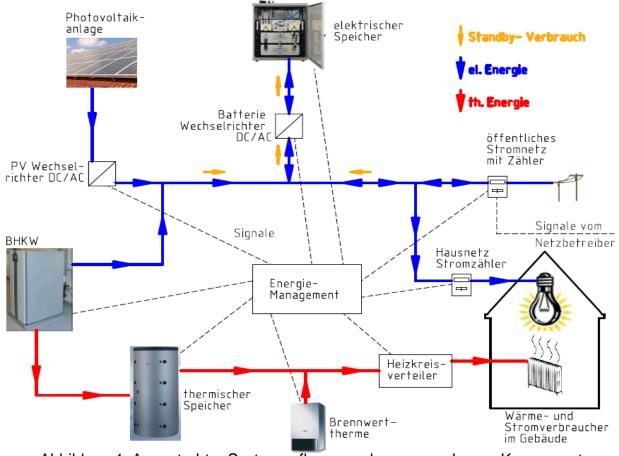



Abbildung 1: Eigenverbrauchsanteil (links) und Autarkiegrad (rechts) in Abhängigkeit der nutzbaren Speicherkapazität und PV-Leistung, jeweils normiert auf den Jahresstrombedarf in MWh. Durch die Normierung lassen sich die Bewertungsgrößen für Haushalte je nach der Höhe des Jahresstrombedarfs abschätzen.

Systemauswahl V

Ergänzung des Systems um weitere Stromerzeuger (BHKW, Wind) zur Erhöhung der Autarkie und der besseren Ausnutzung des elektr. Speichers sinnvoll, Untersuchung im

→ Projekt EKOSTORE

Gefördert durch:

Abbildung 1: Angestrebter Systemaufbau aus den vorgesehenen Komponenten

Projektvorstellung EKOSTORE

Technische Ziele

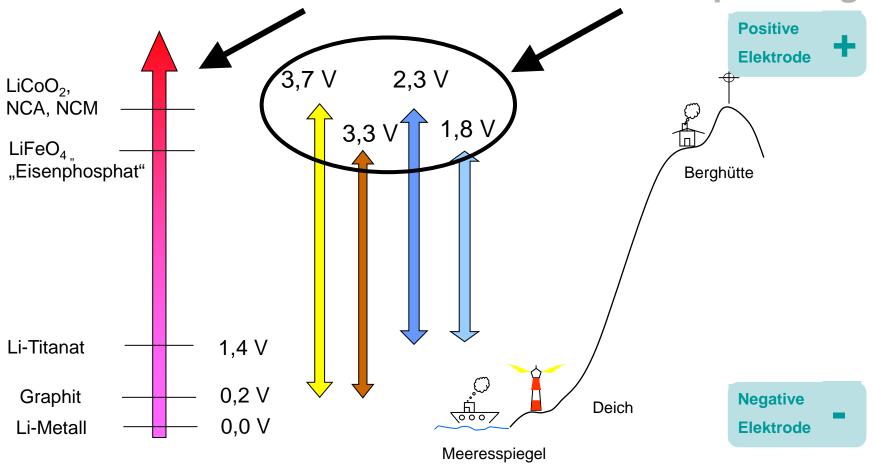
- Auslegungsoptimierung der Komponenten
- Anpassung der Schnittstellen
- Speicherorientierte Betriebsweise von mBHKW, Systemoptimierung in Bezug auf Speicherkapazitätsauslastung ("Doppelnutzung" durch mBHKW und PV)
- Entwicklung eines Energiemanagementsystems (systemoptimiert, witterungsangepasst)
- Standardisierung und Normierung der Schnittstellen zwischen Energiemanagementsystem und Systemkomponenten
- Aufbau einer Demonstrationsanlage des Zielsystems

Gliederung Batteriespeicher für Heimanwendungen

Batteriespeicher für Heimanwendungen

- Systemunterschiede Gebäudeeinbindung
- Systemunterschiede Batterietechnik (Blei, Lithium mit Teilsystemen)
- Fragestellungen zur Systemoptimierung

Systemunterschiede Batterietechnik

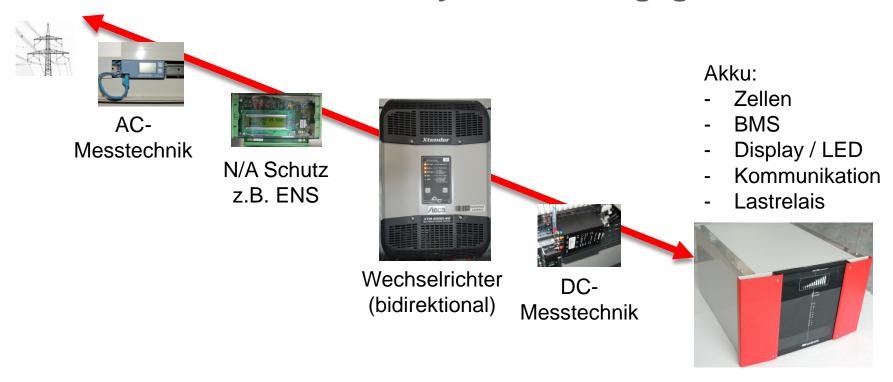

Elektrische Speicher lassen sich in unterschiedlichen Technologien realisieren und unterscheiden sich dabei meistens in:

	Blei	Lithium
Effizienz	~ 85 %	85 – 95 %
Zellspannung	2,0 V	1,8 V - 3,7 V
Nutzungstiefe	50 %	80 – 90 %
Lade- /Entladerate	C10	bis 4C
Handling	BMS optional, Tiefentladeschutz	BMS zwingend erforderlich
Lebensdauer	1000 - 2000 Zyklen	2.000 – 15.000 Zyklen
Normen	Siehe Speicherpass vom BSW-Solar und ZVEH	

2 | Speichertechnologie Lithium Ionen

Elektrochemisches Potential und Zellspannung

Elektrochemische Spannungsreihe


Gliederung Batteriespeicher für Heimanwendungen

Batteriespeicher für Heimanwendungen

- Systemunterschiede Gebäudeeinbindung
- Systemunterschiede Batterietechnik (Blei, Lithium mit Teilsystemen)
- Fragestellungen zur Systemoptimierung
 - Bereitschaftsverluste
 - Dimensionierung

Bereitschaftsverluste und Systemwirkungsgrad

Systemwirkungsgrad =

dem Speichersystem entnommene Energiemenge dem Speichersystem zugeführte Energiemenge

Überlegungen zum Systemwirkungsgrad

5 kWh Strom-Speichersystem 300 Zyklen / Jahr

Energieentnahme = 300 x 5 kWh = 1.500 kWh / Jahr

Lastabhängige Verluste:

 $\eta_{\text{Speicher}} = 95 \%; \ \eta_{\text{Wechselrichter}} = 95 \%$

dazu nötige Energieaufnahme = 1.500 kWh / (0,95²) = 1.662 kWh

Zeitabhängige Verluste:

Bereitschaftsverluste Strom-Speichersystem z.B. 90 W | 60 W | 30 W

Jahresbezogen, d.h mal 8760 h / Jahr 788 kWh | 525 kWh | 263 kWh

Systemwirkungsgrad =
$$\frac{1.500 \text{ kWh}}{1.662 \text{ kWh} + 788 | 525 | 263 \text{ kWh}} = 61 | 69 | 78 \%$$

Herausforderung: Beschaffung und Bewertung von Daten zum Systemwirkungsgrad

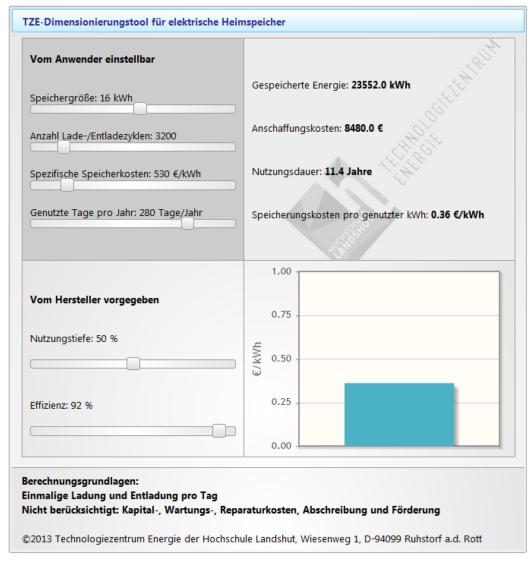
- Herstellerangaben sind in Bezug auf die Bereitschaftsverluste häufig unvollständig.
- Bei Wirkungsgradangaben der Hersteller fehlen oft die zugrunde gelegten Betriebsbedingungen (vgl. STC für PV-Module, Normnutzungsgrad für Heizkessel, Fahrzyklen für KFZ).

- Abfrage der Systemwirkungsgrade und Bereitschaftsverluste durch die Installateure
- Sammeln von realen Daten in einem Feldtest unter anderem zum Abgleich mit Simulationsergebnissen aktuell: Datenzugriff und Messungen

Beispielrechnung I:

Senec.Home G2

- Batterietechnik: Blei


Installierte Kapazität: 16 kWh

Nutzbare Kapazität: 8 kWh

- Effizienz: 92 %

- Anzahl Zyklen: 3200

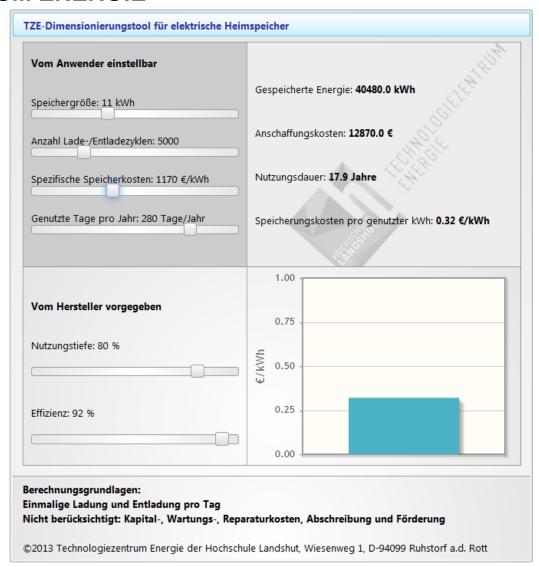
- Preis: 8500 €

Beispielrechnung II:

Knubix KNUT basiX

- Batterietechnik: LiFePO4

Installierte Kapazität: 11 kWh


Nutzbare Kapazität: 8,8 kWh

- Effizienz: 84,8 %

- Anzahl Zyklen: 5000

- Preis: 12900 €

https://www.haw-landshut.de/diehochschule/technologiezentrumenergie/service-downloads/infos-rund-um-dieenergie.html

Fazit:

- Sind elektrische Energiespeicher wirtschaftlich?
- Tendenz derzeit eher noch nein, aber in Kombination mit PV-Anlagen und entsprechend günstigem Einkauf können Stromspeicher zunehmend wirtschaftlich sein, besonders wenn noch ein Zusatznutzen mitabgedeckt wird.
- Warum sollte dann dennoch intensiv über den Einsatz dieser Technologie nachgedacht werden?
- Weil es den Betreibern von kleinen PV-Anlagen die Möglichkeit bietet, mehr "eigenen" Strom zu nutzen und damit die Energiewende von unten unterstützt.

Vielen Dank für Ihre Aufmerksamkeit !!!

Fragen ???

Technologiezentrum Energie der Hochschule Landshut

Wiesenweg 1 · D-94099 Ruhstorf an der Rott

Tel.: +49 (0)8531 - 914044 0 Fax: +49 (0)8531 - 914044 90

info@tz-energie.de www.tz-energie.de

